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Since the invention and applications of the method of least squares by
Carl Friedrich Gauss in the early 19th century an extremely useful tool for
analysis of scientific data has remained in the scientists’ arsenal of analytical
methods for the last 200 years.

The present paper will reveal my own experiences with least squares
methods applied to a variety of studies in chemical physics. The earliest
study was the determination of the solubility of PbSO4(s) as a function of
[HClO4(aq)] in mixtures of LiClO4(aq) or NaClO4(aq) at an ionic strength
of unity. Least squares was employed to determine the principal values and
directions in the polarized absorption spectra of a single crystal of a 1:1 com-
plex of 1−methylthymine and 9−methyladenine (the Hoogsteen dimer). A
functional equation for extracting the H atom form factor from the molecular
form factor of H2 was a solution to a least squares problem. Small gaussian
expansions of SCF atomic orbitals and of Slater type orbitals (STO) are an
example of highly non-linear least squares equations. Generalized X-ray scat-
tering factors (gsf’s) are a rotationally invariant basis set for projection onto
simple functions of measured X-ray crystal structure factors by the method
of least squares. A three−parameter equation of state for strong electrolytes
was successfully fit, by least squartes, to osmotic pressure mesurements at
concentrations in excess of 6 M. A rather accurate construction of the density
of phonon states in Si(s) was obtained from a least squares fit of 21 force
constants (Born−von Kármán model) to coherent, inelastic neutron scatter-
ing data, crystal elastic constants and an optical Raman line. Inclusion of
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correlation coefficients among the errors of the force constants was essential
for reliable error estimates of thermodynamic properties of Silicon. A final
example will illustrate the use of least squares to establish a non-existant
surface harmonic in the valence electron structure of a bonded F atom.

1 The solubility of PbSO4(s) as a function of

[HClO4(aq)] in mixtures of LiClO4(aq)

or NaClO4(aq) at unit ionic strength

The solubility of lead sulfate at 25 ◦C in varying acidity mixtures of per-
chloric acid and sodium perchlorate, and of perchloric acid and lithium per-
chlorate was determined. The strong electrolyte solutions were fixed at an
ionic strength of unity. The dominant ionic species, coupled by equilib-
ria, in the acidic aqueous solutions saturated with the sparingly soluble salt
PbSO4(s) are Pb+2(aq), HSO−

4 (aq) and SO−2
4 (aq). From elementary consid-

erations of ionic equilibria, the solubility squared should be a linear function
of [H3O

+(aq)]

S2 = Qsp +
Qsp

Q2

[H3O
+(aq)]

if the solubility quotient, Qsp, for lead sulfate and the bisulfate dissociation
quotient, Q2, are constant over the acidity range fixed at an ionic strength
of one.
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A least squares fit to the solubility data confirmed our expectations for
the Li+(aq) salt mixtures, but deviations in the Na+(aq) mixtures indicated
the probable formation of the ion pair NaHSO4(aq) as a significant player in
the equilibrium mixtures.

R. W. Ramette and R. F. Stewart, J. Phys. Chem.,65, 243-246 (1961).

2 Polarized absorption spectra of purines and

pyrimidines

Dichroism measurements of thin (>100 nm) single crystals of 1−methylthymine,
9−methyladenine and the Hoogsteen dimer were used to determine the tran-
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sition dipole moment directions in the UV wavelength range of 300 - 230 nm
for several π∗ ← π absorption bands.

The Hoogsteen dimer crystallizes in space group P21/m. The crystal is
dichroic for polarized light propagating along the b axis, but is not fixed by
crystal symmetry. If T1 and T2 are the transmittances corresponding to the
principal directions P1 and P2, respectively, then the measured transmittance
as a function of φ, the angle between the electric vector of the light and a
crystal edge, can be written in the linear form,

T(φ) = β ξ + γ η + δ

where ξ is cos 2φ, η is sin 2φ and δ is (T2 +T1)/2. The least squares variables,
β, γ, and δ are related to the principal transmittances, T1, and T2 by trigono-
metric relations and the angle from a crystal edge to the principal direction
P2 is,

θ =
1

2
arctan(

γ

β
)

The weights used were 1/T 2. The least squares fits were applied to trans-
mission measurements for light wavelengths from 290 to 230 nm every 5 nm.

The final determination of the transition dipole moment directions for
thymine and adenine was completed after the crystal structure of 9−methyladenine
was elucidated.

R. F. Stewart and N. Davidson, J. Chem. Phys.,39, 255-266 (1963).
R. F. Stewart and L. H. Jensen, J. Chem. Phys.,40,2071-2075 (1964).
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3 A bonded H atom form factor

Lyle Jensen pointed out to me that something was amiss with the H atom
form factor. He was getting temperature factors that were systematically
less than the atom to which the H was bonded. The results were based
on least squares fits to a product of an isotropic Debye-Waller factor and a
standard form factor for the ground state H atom. I knew that Ms. Wang’s
valence bond wavefunction for molecular dihydrogen indicated a contracted
1s atomic orbital from a variation treatment. Weinbaum’s H2 wavefunction
(a mix of molecular orbital and valence bond Ψ) also pointed to contraction
in the 1s bases. If H2 could serve as a model for a bonded hydrogen atom,
then perhaps an H atom form factor could be extracted from an accurate
molecular form factor of H2. During my post-doctoral stay at the University
of Washington, Ernie Davidson was a newly appointed assistant professor
in the chemistry department. He had recently derived the first ten natural
orbitals from the Kolos-Roothaan wavefunction for H2 at its equilibrium
internuclear distance Re. The resulting electron density distribution function
was a 91 term polynomial in confocal elliptical coordinates. By expanding
the plane wave in spheroidal wavefunctions, it was possible to compute a
molecular form factor for H2.

The task was to construct an approximate molecular form factor, G(K)
and fit it by least squares to the molecular form factor, F (K) for H2. We
define the mean square error function,

ε =
∫

W (K)|F (K)−G(K)|2d3K, W (K) ≥ 0

W (K) is a positive weighting function and depends only on the magnitude
of K. Within the spherical approximation of the bonded atom, G(K) may
be written as

G(K) = f(K)
[
eıK·δ + e−ıK·δ

]
where ± |δ| are the distances from the midpoint of the bond to the centers of
bonded H atoms (not necessarily the sites of the two protons). G(K) must
transform as the totally symmetric representation in point group D∞h. With
η the direction cosine of K with respect to the molecular axis which contains
R, ε is a minimum for any W (K) ≥ 0 if

ε(K) =
∫ 1

−1
|F (K)− 2f(K) cos(gcη)|2dη
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is a minimum for each K. g is some fraction between 0 and 1 and c is KRe/2.
Accordingly, for a given g, the minimum condition is satisfied when

f(K) =
∫ 1

−1
F (K) cos(gcη)dη/2

∫ 1

−1
cos2(gcη)dη.

When g is 1, the form factor is situated at the protons. The optimum value
for g was 0.81 which gave the lowest value for

ε =
∫ ∞

0
ε(K)K2dK.

Both the best floated and proton centered form factor curves were more
extended in K space than was the form factor for an isolated H atom. The
best floated sphere scattering factor was tabulated as a function of sin θ/λ.
This curve usually led to larger, positive values for the isotropic displacement
parameter for H atoms that are covalently bonded in organic molecules.

Robert F. Stewart, Ernest R. Davidson, and William T. Simpson, J.
Chem. Phys.,42,3175-3187 (1965).

4 Small gaussian expansions of SCF atomic

orbitals and Slater type orbitals

In 1950 Boys published a paper pointing out that molecular integrals over
gaussian functions were much easier to calculate than corresponding ones
with Slater-type orbitals. The reason for this is that a product of two gaus-
sians on separate centers is also a gaussian function at a different site. A
two-center orbital product in gaussian bases may be easily expressed as a
form factor with a gaussian dependence on K. A least squares expansion of
STF’s (Slater-type functions) in gaussian bases should provide one with an
optimal density distribution function, but by no means would such expan-
sions be optimal for minimizing the SCF energy of an atom.

I originally expanded SCF-AO’s in a small number, two to five, of gaussian
functions. The atomic orbitals were those of Clementi and were made up of
STF’s. For a single SCF atomic orbital the error function to be minimized
was

ε =
∫
|φ− χ|2dτ + λ

(
1−

∫
χ∗χdτ

)
.

where φ is the SCF orbital of interest, χ is a linear combination of GTO’s
(gaussian-type orbitals), and λ is a Lagrange multiplier. The minimization
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of ε is linear in the expansion coefficients, {d}, but highly nonlinear in the
exponential parameters, {α}. We put these expansion parameters, including
λ into an array P. In matrix notation, the equations to solve are,

V = W∆P

where

Vj =

(
∂ε

∂Pj

)
P0

and

Wj k = −
(

∂2ε

∂Pj∂Pk

)
P0

The equations are solved iteratively until ∆P is an effective null. In the
space spanned by P, the matrix W frequently had negative eigenvalues, at
which point a search along the direction of the eigenvector with the most
negative eigenvalue was undertaken to seek a lower value in ε. The expansions
were used to generate two-center form factors, but were never really used in
applications to X-ray diffraction data. Other constraints were imposed for
quantum chemical calculations and became the bases in minimal basis STO-
3G calculations.

Robert F. Stewart, J. Chem. Phys.,50,2485-2495,(1969).
Robert F. Stewart, J. Chem. Phys.,52,431-438,(1970).
W. J. Hehre, R. F. Stewart, and J. A. Pople, J. Chem. Phys., 51,2657-
2664(1969).
W. J. Hehre, R. Ditchfield, R. F. Stewart, and J. A. Pople, J. Chem. Phys.,52,2769-
2773(1970).

5 Generalized X-ray scattering factors

The expansion of a plane wave in spherical wavefunctions is a thing of beauty:

eıK·r =
∞∑

n=0

n∑
k=0

ın(2− δ0k)(2n + 1)
(n− k)!

(n + k)!
×

cos
[
k (φK − φr)

]
Pk

n(ηK)Pk
n(ηr)jn(Kr)

Note that both K and r are represented with spherical polar coordinates.
The surface harmonics in the plane wave expansion make up a complete set
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in the space spanned by the solid angle, Ω, of a sphere. We write them as
real functions,

ynk±(Ω) = Pk
n(η)

{
cos kφ
sin kφ

where Pk
n is an unnormalized Associated

Legendre function.
The ynk±(ΩK) transform directly to r space as

(−ı)nynk±(Ωr)/4π.

The spherical surface harmonics may be incorporated into a structure factor
equation that employs generalized X-ray scattering factors (gsf),

Fc =
∑
sym

∑
p

fp(K)Tp(K) exp(2πıh · xp)

The xp are atomic (or nuclear) positions of the atoms in the unique part of
the crystallographic unit cell. The function Tp(K) characterizes the mean
thermal motion of the nuclei and its associated electron density, which is
represented by fp(K). The product fp(K)Tp(K) is an X-ray scattering model
for a rigid pseudoatom. The function fp(H) is a generalized X-ray scattering
factor (gsf) for pseudoatom p,

fp(K) =
∑
n k±

Cp,nk±fp,l(|K|)ınyn k±(ΩK).

The Cp,nk± are determined by least squares projection of the gsf bases onto
the reduced X-ray scattering observations.

The ynk± are real spherical surface harmonics with the angular compo-
nents of the Bragg reflections as arguments.

Since the ynk±(ΩK) span all the irreducible representations of the rotation
groups, fp(K) is a rotationally invariant function.

The radial factor for pole n of pseudoatom p is,

fp,n(|K|) =
∫ ∞

0
ρp,n(r)jn(Kr)r2dr

The ρp,n(r) are usually based upon quantum chemical calculations. The
usual procedure is to employ products of SCFAO’s that were used to deter-
mine the atomic form factor of an isolated atom.
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In practice the fp,n(|K|) are radially scaled with the scaling parameters
adjusted to afford an optimal fit to the diffraction data.

The electronic parameters are determined most precisely from the low to
intermediate angles of the scattering measurements.

The fp,n(|K|), for n > 0, have an appreciable amplitude of scattering for
|K| up to about 9.5 Å−1 (sin θ/λ equal to 0.76 Å−1). The sundry parameters
are components of a vector P which spans the χ2 error function,

χ2 =
∑
H

wH (|FH,rel|n − |Fc(P)|n)2 , n = 1 or 2

and
wH = 1/σ2

H

where σ2
H is the estimated variance of the reduced measurement |FH,rel|n.

For the notation here,
|H| = |K|/2π

The components of P are varied to render χ2 a minimum.
In order to precisely determine the parameters in the Fc model the ratio of

observations to variables should in general exceed twenty. When a minimum
in χ2 has been found, the inverse elements of the Hessian of χ2 can be used
to estimate the variance of some direct space property, G(r), that is derived
from the Fc model.

σ2(G(r)) =
χ2

No −Nv

∑
j≥k

∂G

∂Pj

(2− δjk)(w
j k)

∂G

∂Pk

where wj k is an inverse matrix element of the Hessian of χ2.
The {Pj} used for a variance estimate may be a subset of the compo-

nents of P. The set of electronic parameters used to construct the gsf is an
example.

Robert F. Stewart, J. Chem. Phys.,51,4569-4577(1969).

6 A three parameter equation of state for

strong electrolytes

A three parameter equation of state for strong electrolytes was used to an-
alyze osmotic coefficient data of chloride salts in water at 25◦C and up to
concentrations in excess of 6 M.
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The observed osmotic coefficient φ is defined by

Π = ν c RTφ(c)

where Π is the observed osmotic pressure, ν is the number of ions per elec-
trolyte c is the molar concentration in moles/liter and T is the absolute
temperature. A trial function, φtrial, which represented our best guess to the
ionic interactions that influences the osmotic pressure was constructed. The
trial function contains one or more adjustable parameters, each of which has
a precise physical interpretation. The parameters were adjusted to obtain
the best mean square fit of φtrial to φ over a pertinent concentration range.

The deviation δφ to φ from unity is rather well represented with an elec-
trostatic term, δφa, and an excluded volume due to packing of hard spheres,
δφb. A primitive trial function accounted for much of the observed behavior
of φ,

φp = 1 + δφa(a0) + δφb(b0c)

The explicit form for δφa is given by the theory of Debye and Hückel; the
hard sphere pressure term δφb is computed with a 2-2 Padé approximate.
The adjustable parameters in the primitive function were a0 (in Å) and b0

(in L/mole). At concentrations greater than 1 M it was clear that deviations
from the measured osmotic coefficients were due to the association of ions
into dimers or clusters of higher aggregates. The dominant change an asso-
ciation has upon φ is a reduction in the concentration of Brownian particles
contributing to the osmotic pressure. The expanded trial function

φtrial = (1− F )φp

with the new function
F = δcB(c)/νc

F has two parameters. One is an association constant K; the other is the
number of ions, τ . Most of the alkaline metal chlorides had a τ value of two.
Both HCl and LiCl had τ values of 6 and 8, respectively. A typical result
was for NaCl with a τ of 2, a0 of 4.82(6)Å, b0 0.1131(3)L/mol and K .210(5).
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Robert F. Stewart and Clarence Zener, J. Phys. Chem. 1988, 92,1981-
1985.

7 Phonon dispersion curves for Si(s) at 293K

Ordinarily the mean square amplitudes of motion for atoms (atomic dis-
placement parameters) are determined from least squares fits of structure
factor models to neutron or X-ray diffraction data. An alternate route to an
experimental mean square amplitude of vibration may be carried out by a
lattice dynamical treatment of simple crystals. In particular, coherent inelas-
tic neutron scattering measurements on a monatomic crystal can be fit with
a Born-von Kármán force constant model from which the density of phonon
states may be derived.

Dispersion data sets from inelastic neutron scattering measurements for
the symmetry directions ∆[100], Σ[110] and Λ[111] in the Brillouin zones of
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Si(s) were fit by least squares to the BvK force constants up to sixth near-
est neighbors. This makes up a total of 21 force constants. A least-squares
program was written to fit the BvK force constants to the squares of the
measured cyclic frequencies, ω2, for the ∆, Σ, and Λ symmetry directions.
The elastic constants and an optically measured Raman frequency were in-
cluded as observational constraints. (The elastic constants can be related to
the force constants by the method of long waves.) The mean square error
surface is,

ε =
No∑
n=1

wn [On − F (q;P)]2

F is an explicit algebraic expression which is a function of q, a vector in the
Brillouin zone and P is a vector that consisted of the BvK force constants.
No was 193.

The nonlinear least squares equation was solved for the 21 force constants.
The solution seemed to be unique.
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A density of phonon states, g(ν), was derived from the force constants.
A full propagation of error, based on all of the inverse matrix elements of the
Hessian of ε, allowed us to determine moments and their associated error, of
g(ν).

B =
2h2

mkBT

∫ ∞

0
g(ν)

1

x

(
1

2
+

1

ex − 1

)
dν

where x = hν/kBT .
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The value of B for Si(s) at 293 K was found to be .4691±.0016 Å2 or
equivalently a <u2 > of 0.005941(21)Å2. The result was essentially the same
as derived from a structure factor fit to Pendellösung X-ray data.

Claus Flensburg and Robert F. Stewart, Phys, Rev. B 60, 284-291(1999).

8 Valence electron structure of F in tetra-

fluoroterephthalonitrile

Most least squares programs assume that the basis functions employed have
a physical relevance to the experimental data. Sometimes, inclusion of yet
another parameter in the Hilbert space of least squares leads to a “diver-
gence” in the iterative process of seeking a solution. Introduction of another
coordinate should only lower the mean square error or keep it the same. If ε
increases, then the least squares algorithm is failing.
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An interesting example of an “unwanted” parameter occurred in an anal-
ysis of tetrafluoroterephthalonitrile X-ray diffraction data with a gsf model.
In an effort to optimize an octopole radial form factor for the bonded F
atom, the minimum in ε occurred when the radial parameter, α3(F) became
indefinitely large. At this stage there were 100 variables in the analysis and
3293 observations. The radial form factor was

f3(K) =
K3

7!![1 + (K/α)2]5
.

At large α this form factor becomes

K3

7!!

The f3 form factor had smoothly transformed itself into a third degree Gram-
Charlier scattering function. The inference to be made is that the F atom
has virtually no valence structure of third degree symmetry and the model
displayed anharmonicity in the motion of the F nucleus.
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A plot of ε versus α3(F) (with variation of the other 99 parameters) shows
the minimum comes from below and that a Newton-Raphson type algorithm
will clearly fail.

H. Sørensen, R. Stewart, G.J. McIntyre and Sine Larsen, Acta Cryst.
(2003). A59,540-550.
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